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The effects of machine-generated random errors on the bias and variance of the estimates:of the parameters
of a general linear model arc investigated in this paper. Stockis and Tong (1999) did the same analysis on
an autoregressive AR(l) model and found that machine-generated errors could introduce bias on the
parameter estimates as well as inflate their variances. In this study, a similar result is obtained but we found
that the resulting estimates remained unbiased with inflated variances.
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1. INTRODUCTION

Theoretical results in Statistics are often verified empirically through Monte Carlo
Simulation. This verification process invariably requires the use of machine-generated
errors which are produced by iterating a linear congruential function of the form:

XI=aXI_J+b(modc) , (1)
where a, band c are relatively prime. Typically, c is a large number, say 9=231_1 ..

Random errors produced by using equation (1) are pseudo-random numbers in the sense
that they are not strictly independent. In fact, equation (l) may be generalized by using a
dynamical function r( ): I

XI = T(Xt-!) , t =1,2, 3, ... , (2)
I

Since XI depends on X;-I in some deterministic way, the sequence of numbers generated
by a linear congruential generator or a dynamical function cannot be truly independent. It
is natural then to ask the effect of using pseudo-random numbers; on the theoretical

I

properties of statistical estimates.

Stockis and Tong (1999) investigated this issue in the case of a simple autoregressive
AR(l) model:

XI = q;XI_ 1 + Gil (3)

where, theoretically, Gn are iid F(). The Yule-Walker estimate of q; is given by:

•
(4)

•
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Results of this nature are important since most simulation studies utilize machine
generated errors. Recent researches on random number generation have tended to use
chaotic functions such as the logistic function and tent maps as sources of random
numbers. The ability of chaotic functions to generate 'almost sure" random numbers
derive from the act that these numbers have mixing properties, are aperiodic (almost
surely) and are dense in [0, I].

This paper considers the effect of using random numbers generated from the chaotic
functions in the case of general linear models. Section 2 discusses the general linear
model of interest and the logistic function as a source of the random errors; Section 3
examines the theoretical effects of these numbers on the estimates; Section 4 gives the
conclusions and recommendations.

2. THE GENERAL UNEAR MODEL AND CJHlAOTIC FUNCTIONS

The general linear model is given by:
Y =XfJ + s (5)

where Y is an n x 1 random observable vector, X is an n x p matrix of constants, ~ is a
p x I vector parameter and e is an n x I random unobservable errors. In the classical
model, I': is assumed to be composed of iid errors £1, £2, ... , e; with E(£n)=O and
Var(£II)=d for all i. .

Without knowledge of the functional form of the distribution of 1':, the least-squares
estimate of ~ is given by:

p = (X' X ) -I X 'Y (6)

The least-squares estimate of fJ is unbiased in the sense that:
~

E(fJ) = fJ (7)
with variance:

Var(iJ) =0"2(X'Xr l (8)

The asymptotic distribution of ;;;(jJ - fJ) IS multivariate normal with mean zero and

covariance matrix 0"2I: where:

I: = lim!(X'xr' (9)
II-)U'l n

Such nice. theoretical properties of iJ held in the case that {£; } are iid with zero mean
and constant variance d. However, they may no longer continue to hold if either the
independence or identical distribution requirement is violated.

If we assume that the errors are generated by some chaotic function z{ ), then a
connection between chaos and probability has to be made. Birkhoff (as quoted by Hunt
(1995) and Berliner (1977)) made such a connection via the ergodic theory. In simple
terms. this theory states that for a large enough sample size n, there exists an invariant
measure G( ) such that:

...

••

•
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-!.~>k (Xo)~ JXdG(X) as k ~ co
k k A

where {Xo' r(Xo)' r
2(X

o),K} is the trajectory of r(·) .

probability distribution of the trajectory.

19

(10)

In a! sense, GO describes the
I

When such an invariant measure exists, then one can think' of the chaotic numbers as
I

having been generated from the invariant measure itself. F<j>r instance, for the logistic

map, rex) =4x(l- x), the invariant measure GO is the arcsi:ne distribution. Thus, when
05 :n is large (to the magnitude of I ), the classical results may.continue to hold in the case

of a general linear model. '

3. MAIN RESULTS

assume that E(Gj)=O (note that if E(G;)=f.1 then let
i

Without loss of generality,

G; = Gj - f.1). We can write:

P= P+(XxyIX'G

Individually, it is therefore possible to write:
n

Pj = Pj +I WkGk' j = I,'K , P
k=1

(II)

(12)

••

•

•

= Pi + WIG) + W2G2 +L + wnG n

where {wi} is the jth row of (XX) -I X'

If G, = r(GH ) , where reo) is a chaotic function, we require two definitions that will allow

us to represent Go as a sum of iid variables {2,} :

I

Definition 1. A shift is a transformation a: n~ n, where the element of n are doubly-
I

infinite sequences of the form W = (K , w_ p wO' wpK) of element of a finite set V and a

operates on an element in such a way that the nth coordinate of a(w) is wn+l , i.e.
a(K , w_p wo' wpK) ~ (K , Wo, WI' w2,K) )

Definition 2. A Bernoulli shift (p, a) is shift where probabilities P; are assizned to the
Ip i

elements i of the finite set V in such a way that n I and r:r(Wo = i) = P; independent of
each n. Clearly the measure so generated on n, say P, is invariant under the, shift a .
Using the logistic map can do a simple illustration ofthe Bernoulli shift. Suppose that we

I
I I

rex) ~ - I X - 0 1
assign the value 1 if 2 and 0 otherwise. Then, starting' from 0 - • ,we obtain

the path:{0.1, 0.36, 0.9216, 0.2890, 0.8219} after four iterations, Our rule then transforms
I
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this into to, 0, 1,0, I} .which looks like a realization from a binomial distribution with
I

p=-
parameters nand 2

When a deterministic dynamical function enjoys the Bernoulli shift property, then the

generated sequence {tJ admits a linear representation:
a

E:, - E(t',) = I ({J,Z,_I
'=-a (13)

where {Z,} is a set of independent and identically distributed (iid) random variables with
mean zero and finite variance (Stockis and Tong, 1999). The tent map and the logistic
map both possesses the Bernoulli shift property. It now follows that

P; - /3; = I I W;({JpZii
i (14)

Equation ( 14) is the weighted sum of iid random variables. The generalized Central Limit

Theorem assures us that the asymptotic distribution of /3; will be normal. In fact

Proposition 1. The least-squares estimate of /3 is unbiased for /3 even if the errors are
generated by a chaotic dynamical function.

Proof.

The proof is straightforward:

E(P) =(X~¥rl X'E(Y) =(XXr l X'E(X /3 + E:) =/3

The unbiasedness of /3 holds even in the small-sample case provided that E(E:) is taken

with respect to the invariant measure GO. However, it is not clear at this point in time if
the ergodic theory of Birkhoff holds in the small sample case. Research on the rate of
convergence to the invariant measure is needed.

Next we consider the asymptotic distribution of /3 .

Proposition 2. Let {E:,} be represented as a linear combination of iid random variables
{Z,L

fll

E:, =I ({JIiZi
i=1

and suppose that:
·n

I ({J,~ < C()

(i) i=1

••

•

•
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I "
lim-L W;2 =()k

(ii) n 1=1

then:

j;,(Pk - 13k)~N(0,(j2()k fqJf~ as n~ 00

i=1

for k = I, 2,K ,p .

21

..

•

•
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Proof. ,
I A

The proof follows from Lindeberg's Central Limit theorem:by noting that (13k - 13k) can
I

be expressed as a linear combination of iid random variables: {2/} .

Moreover,

Var(p) =Var(LI wjqJ;iz)
; 1=1

j 1
<fl,

_ 2(" 2" 2)-(j LJ Wi LJ qJ!i
j ;=1

which gives the asymptotic variance as n~ 00 •

Individually, therefore, the components of 13 are asymptotically univariate normal which
'f)

" 2 ,

13
LJ~:

are unbiased for and inflated variances (by a factor ;=1 ')'.

Proposition 3. Let {c;} be represented as a linear combination of iid random variables
I

{2,} .

'"
e, = LqJlizli' / = I, 2, K • n

1=1

h
E(zl/') =0, Var(z,/,)=(j2 forallj, andwere, ,

{
COV(Z,j,Zki ) = r ,k' t:,c.k

Covie., ck) = ,1.fk
Suppose that:

'"
(j2L qJ!i = ,1.11 < 00, / =I, 2, K .n

(i) 1=1

, -I '
(ii) P"=(X,,X,,) X" ~P as n~oo



22 Padua: General Linear Models with
Machine Generated Errors

•

AI"

,.1,2"
~ A as n ~oo

as n ~ 00

M

All ,.1,12

A" =
~I ~2

M M

(i ii)

Then, ,f;;(iJ - f3)~MVN(O, P'AP)

Proof.

It suffices to compute the variance-covariance matrix of (Z, l. By Proposition 2.
CJ'

Var(cJ=a2Ltp/~=A", 1=1, 2.K,n
j=1

..
and

j m

The result follows by an application of the multivariate central limit theorem.

Stockis and Tong (1999) provided conditions under which the dynamical function r{)
admits for a Bernoulli shift representation. We interpret some of these conditions
statisticalIy.

The diagonal elements of A" are given by:
'f'

a
2Ltp;; = 'kk' k = I, 2, K . nil

;=1

If •
."

Ltp12; < 00,

;=1

then the diagonal elements are assured of convergence. On the other hand, the off-

diagonal elements of A" are

Ali =rk; L L tpkitp;m' k:j. j.
i III

Since

we need only investigate Yki =COv(Zki,zim)' Fora fixed k,

Cov(z,. z, ) = 0 b I iid .
,." tan y t ie II assurnpuon. •

We note that
k(E::k =, xo)

t' ... I I x E U(O I)or some uuna va ue 0 '.

•
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I

AI
ck+i =rk+i(xo) S· b th rk(Co)=Ck and rk+i(co)=tk+iso,· . tnce 0

r k (s ) and r k
+ i (c )correlations between 0 0 cannot be zero.

23

depend on co, the

••

•

•

Machine limitations pose some serious problems in actual: simulation studies. In
particular, the choice of the initial. value Co will always be a rational number. If the chaotic
map r(.) is the logistic map, then the initial value Co will always be a periodic point of
r(. ). (Padua, 2000) ,

Theoretically, if ~, is a periodic point of period P, the sequence {cl,c2,K ,c,,} will repeat
after P iterations so that

Cov(cI'C"+i) = 1

However, due to machine truncations, the value
c

1
=r(co)

will fall on the orbit of yet another periodic point co" (also a radonal number), the value
"" '

~} and so on.

For example, starting with Co =0.1 , the logistic map r(x) =4x(l- x) gets trapped to the

bi f h . di . e *=0 0 tt h 515 h i . ' e =0 I . . dior It 0 t e peno IC POint 0 • a LeI' t e t Iteration, ~et 0 • IS a peno IC

point whose period is not P = 515. Consequently, Cov(CI' c"+I) <I, and in fact, it will be
close to zero. I

Table 1 shows this phenomenon in the case of the logistic map
r(x) = 4x(l- x)

with Xo = 0.3 .

Table 1
Autocorrelation Values for the Logistic.

Map with Xo = 0.3, n = 1000
At Various Lag (Absolute Values)

Lag I 2 3 4 5 6 7 8 9 10 II l

Autocorrelation .074 .076 .005 .035 .029 .017 .014 .022 .004 .047 .048
Lag 12 13 14 15 16 17 18 19 20 21 22
Autocorrelation .046 .029 .048 .069 .001 .0004 .029 .0,49 .048 .047 .071

The correlation values at Lag I and Lag 2 are significant at a f 0,05, however, the lag
correlation up to Lag 9 are not significant (and may be considered equal to zero). The
pattern is somewhat repeated from Lag 10 to Lag 18, and so on. '

The set of all periodic points of the logistic map forms a dense :,subset of [0, I] and is a
countable set. The Lebesgue measure of the set of all periodic points of the logistic map is
therefore zero, i.e., there are more non-periodic points than periodic points. If it were
possible to choose a non-rational starting value on a theoretical 60mputer, then we could
theoretically generate a purely iid set of random numbers.
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4. CONCLUSION

'.
The study proved that if the error components of a general linear model were generated
from a chaotic dynamical function admitting a Bernoulli shift representation, then the
estimates of the parameters remain unbiased with inflated variances. However, for small
sample sizes, the reference to Birkhoff's ergodic theory need further study.

We recommend a study on the rate at which certain dynamical functions numbers
approaching the Frobenius-Perron invariant measure. In particular, such an investigation
will put substance on the claim that the estimates of the parameters of the linear model
will be unbiased even in the small sample case.

Further research on the connection between chaos and probability needs to be undertaken
in view of the current resurgence of interest on the subject mater of dynamical systems.
Dynamical systems are seen as good models for explaining biological phenomena (Brown
et al (1997», fluid turbulence, and others.
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